High precision printing. 



Redefining material spot printing.

FluidFM® spotting enables you to reproducibly create high density arrays with femtoliter spot sizes, both in gaseous and liquid environments.

Print oligonucleotides, proteins, DNA, bacterial clones, oil and other materials with unprecedented precision and within their native environment. Applications of FluidFM spotting are found in life sciences, sensor technology, minimal lubrication and beyond.

FluidFM Nanopipette Spotting









FluidFM Spotting Femtoliter Spots at Nanometerscale

Spots at Nanometer scale.

FluidFM based spotting redefines volumetric control of material spot printing.

With FluidFM spotting it is possible to reliably produce spot sizes with volumes as low as a few femtoliters on a large variety of target surfaces. The entire procedure can thereby be carried out in gaseous or liquid environment, with the option of additional humidity control. Precise adjustment of the relevant process parameters enables the creation of various spot sizes as required by your application.

Unique Techniques.

FluidFM based spotting gives you the edge for your small scale material dispensing applications.

Create microarrays of numerous biomolecules directly within their native environment to avoid denaturation of your sensitive samples. Create functionalized surfaces with unparalleled spatial resolution for the creation of novel biosensing devices with smaller footprints and higher level of performance. Provide minimally lubricated surface modification for your most demanding micromechanical components.


FluidFM Nanopipette

The Procedure in Brief.

With its highly automatized workflows and an intuitive user interface, FluidFM offers a highly precise as well as user-friendly instrument for your most demanding spotting experiments.

Spots are created while the FluidFM nanopipette is in contact with the target surface via application of a short pressure pulse generated by the FluidFM microfluidics control system. Interaction forces with the surface are thereby monitored and adjusted in real-time during the entire procedure. Reproducible control of spot size and dispensing volumes can be comfortably achieved via modification of the contact time and applied pressure.

produce SPOTS WITH feasible METHODS.

Get all your information about spotting directly from us.



Precise spots can be produced with the
FluidFM BOT 



Learn more about the probes which are used to produce spots in the size of a few nanometers



Download the factsheet for spotting



S. Mishra, Y. Lee & J. W. Park. Direct quantification of trace amounts of a chronic myeloid leukemia (CML) biomarker using locked nucleic acid capture probes. Analytical Chemistry, Just Accepted Manuscript. doi: 10.1021/acs.analchem.8b03350

P. Roder & C. Hille. Local tissue manipulation via a force- and pressure-controlled AFM micropipette for analysis of cellular processes. Scientific Reports 8:5892. doi: 10.1038/s41598-018-24255-9


M. J. Aebersold, H. Dermutz, L. Demkó, J. F. Saenz Cogollo, S.-C. Lin, C. Burchert, M. Schneider, D. Ling, C. Forró, H. Han, T. Zambelli &J.  Vörös. Local Chemical Stimulation of Neurons with the Fluidic Force Microscope (FluidFM). (Nov 2017) ChemPhysChem, 1439-7641. doi: 10.1002/cphc.201700780 


H. Koo, I. Park, Y. Lee, H.J. Kim, J.H. Jung, J.H. Lee, Y. Kim, J.-H. Kim & J.W. Park. Visualization and Quantification of MicroRNA in a Single Cell Using Atomic Force Microscopy.Journal of the American Chemical Society, jacs.6b05048. doi:10.1021/jacs.6b05048

Y. Lee, Y. Kim, D. Lee, D. Roy & J.W. Park.Quantification of Fewer Than Ten Copies of a DNA Biomarker without Amplification or Labeling. Journal of the American Chemical Society, jacs.6b02791. doi:10.1021/jacs.6b02791



J. Geerlings, E. Sarajlic, E.J.W. Berenschot, R.G.P. Sanders, M.H. Siekman, L. Abelmann & N.R. Tas. Electric field controlled nanoscale contactless deposition using a nanofluidic scanning probe.  Applied Physics Letters, 107(12), 123109. doi:10.1063/1.4931354

P. Roder & C. Hille. A Multifunctional Frontloading Approach for Repeated Recycling of a Pressure-Controlled AFM Micropipette. PLOS ONE, 10(12), e0144157. doi:10.1371/journal.pone.0144157



H. Dermutz, R.R. Grüter, A.M. Truong, L. Demkó, J. Vörös & T. Zambelli.  Local polymer replacement for neuron patterning and in situ neurite guidance.    Langmuir: the ACS journal of surfaces and colloids, 30(23), 7037 — 46. doi:10.1021/la5012692

J. Geerlings, E. Sarajlic, J.W. Berenschot, R.G.P. Sanders, L. Abelmann & N.R. Tas.  Electrospray deposition from AFM probes with nanoscale apertures.  In MEMS 2014 (pp. 100 — 103). San Francisco: IEEE. Retrived from  http://ieeexplore.iee.org/xpls/abs_all.jsp?arnumber=676558 


P. Stiefel, F.I. Schmidt, P. Dörig, P. Behr, T. Zambelli, J.A. Vorholt & J. Mercer.  Cooperative vaccinia infection demonstrated at the single-cell level using FluidFM.   Nano Letters, 12(8), 4219 — 4227. doi:10.1021/nl3018109



A. Meister, J. Polesel - Maris, P. Niedermann, J. Przybylska, P. Studer, M. Gabi, P. Behr, T. Zambelli, M. Liley, J. Vörös & H. Heinzelmann.  Nanoscale dispensing in liquid environment of streptavidin on a biotin-functionalized surface using hollow atomic force microscopy probes.  (2009) Microelectronic Engineering, 86(4-6), 1481 – 1484. doi:10.1016/j.mee.2008.10.025

A. Meister, M. Gabi, P. Behr, P. Studer, J. Vörös, P. Niedermann, J. Bitterli, J. Polesel - Maris, M. Liley, H. Heinzelmann & T. Zambelli.  FluidFM: Combining atomic force microscopy and nanofluidics in an universal liquid delivery system for single cell applications and beyond.  (2009) Nano Letters, 9 (6), 2501–2507. doi:10.1021/nl901384x

Subscribe to our Newsletter