High precision printing.
spotting
Redefining material spot printing.
FluidFM® spotting enables you to reproducibly create high density arrays with femtoliter spot sizes, both in gaseous and liquid environments.
Print oligonucleotides, proteins, DNA, bacterial clones, oil and other materials with unprecedented precision and within their native environment. Applications of FluidFM spotting are found in life sciences, sensor technology, minimal lubrication and beyond.
PRECISE
fL SPOT DISPENSING
VERSATILE
LIQUID & GAS ENVIRONMENT
FAST
EXCHANGE OF INKS
VAST
CHOICE OF INKS
Spots at Nanometer scale.
FluidFM based spotting redefines volumetric control of material spot printing.
With FluidFM spotting it is possible to reliably produce spot sizes with volumes as low as a few femtoliters on a large variety of target surfaces. The entire procedure can thereby be carried out in gaseous or liquid environment, with the option of additional humidity control. Precise adjustment of the relevant process parameters enables the creation of various spot sizes as required by your application.
Unique Techniques.
FluidFM based spotting gives you the edge for your small scale material dispensing applications.
Create microarrays of numerous biomolecules directly within their native environment to avoid denaturation of your sensitive samples. Create functionalized surfaces with unparalleled spatial resolution for the creation of novel biosensing devices with smaller footprints and higher level of performance. Provide minimally lubricated surface modification for your most demanding micromechanical components.
The Procedure in Brief.
With its highly automatized workflows and an intuitive user interface, FluidFM offers a highly precise as well as user-friendly instrument for your most demanding spotting experiments.
Spots are created while the FluidFM nanopipette is in contact with the target surface via application of a short pressure pulse generated by the FluidFM microfluidics control system. Interaction forces with the surface are thereby monitored and adjusted in real-time during the entire procedure. Reproducible control of spot size and dispensing volumes can be comfortably achieved via modification of the contact time and applied pressure.
SELECTED PUBLICATIONS
2009. A. Meister, J. Polesel - Maris, P. Niedermann, J. Przybylska, P. Studer, M. Gabi, P. Behr, T. Zambelli, M. Liley, J. Vörös & H. Heinzelmann.
Nanoscale dispensing in liquid environment of streptavidin on a biotin-functionalized surface using hollow atomic force microscopy probes.
Microelectronic Engineering, 86( 4-6), 1481 – 1484. doi:10.1016/j.mee.2008.10.025
Y. Lee, Y. Kim, D. Lee, D. Roy & J.W. Park.
Quantification of Fewer Than Ten Copies of a DNA Biomarker without Amplification or Labeling.
Journal of the American Chemical Society, jacs.6b02791. doi:10.1021/jacs.6b02791