Mechano­biology with FluidFM®


Pick. Measure. Release. Repeat.
For cells, microbes, and colloids.

Measure mechanical data of up to 200 cells a day thanks to reversible cell immobilization with FluidFM.  

Single Cell Force Spectroscopy (SCFS) offers quality mechanical data for single cells, microbes, and colloids such as the adhesion of living cells to surfaces or to other cells in near-physiological conditions. Traditionally, in such assays the object of interest is glued to an AFM cantilever. The main drawbacks are the complex handling and the low throughput. For each new cell, the glue has to be removed and painstakingly re-applied to the AFM probe, often the cantilever only lasts for few cells. FluidFM solves this issue by reversibly immobilizing a cell to a FluidFM probe via suction, and subsequent release with a pressure pulse or brief washing. This gentle exchange of the cell allows the cantilever to be re-used for long periods, saves time and costs, and results in a throughput which is increased by more than 10 times.

Simple & reversible immobilization

Reversible attachment of object to cantilever by suction

Huge force range

Measure forces from pN up to µN

Many cell types & colloids

For mammalian cells, microbes, and colloids

Empower your research with FluidFM

How FluidFM boosts your force spectroscopy

10x faster than standard methods

As objects like cells or colloids can be quickly exchanged through reversible immobilization, measurement throughput is increased more than 10-fold. Up to 200 individual objects can be analyzed in a single day.

FluidFM Mechanobiology - Working principle of single-cell force spectroscopy with FluidFM

Working principle of single cell force spectroscopy with FluidFM.

 
 

Fast & easy. In this video, three micrometer colloids are attracted from suspension with a vacuum, held briefly, and then released again with a pressure pulse.

Simple - no glue needed

The suction method of immobilizing the objects onto the FluidFM cantilever makes it reversible and avoids any glue: Pick. Measure. Release. Repeat.

Many cell types and colloids supported

Cells and colloids come in a wealth of shapes and sizes. FluidFM single cell force spectroscopy works with adherent or suspension mammalian cells, spheric or rod-shaped microbes, and with colloids, bubbles, and droplets from 0.5 to 100 µm particle size. FluidFM can handle them whether they are hundreds of nm or dozens of µm in diameter. Customers have even analyzed non-colloidal E.coli cells.

 

CellsMicrobesColloids

FluidFM Mechanobiology - Cell

FluidFM Mechanobiology - Microbe

FluidFM Mechanobiology - Colloid

Adherent or suspension cellsSpheric or rod shaped. Algae, bacteria, protozoa, and fungi.
Colloids from 0.5 to 100 µm particle size. Also for bubbles, droplets.

Switch the probe anytime or reuse to save money

Whether due to degradation, contamination or a required change of probe geometry or chemistry – you can switch the probe at anytime. Just release the object, change the probe, and take up the object again. However, our FluidFM probes typically last for several force spectroscopy measurement days allowing the analysis of several hundred cells. 

Self-centering – means reproducibility

The position of the object on the FluidFM cantilever is given by the position of the aperture. Thus, every colloidal probe will be centered automatically and at the same position – as long as the same FluidFM probe is used. This results in highly reproducible positioning. 

FluidFM single cell force spectroscopy with a Bruker AFM

1) cell is selected 2) Cell is detached from surface 3) Resulting force spectroscopy. Image courtesy of Bruker.

10x higher force range

The various stiffnesses and opening diameters of FluidFM probes enable to measure forces from tens of pN up to µN.

Pick from substrate or attract from solution, or even air

Pick-up cells directly from a substrate or attract them from a solution via liquid influx to the aperture of the FluidFM probe. This method is also recommended when the long-term adhesion of a microbe to a substrate is too strong to quantify, and hence shorter-term interactions are studied. Some customers have also performed particle and microbe measurements in air.

Image and Text

S. Cerevisiae, also known as baker’s yeast, are picked-up from medium, measured and then deposited in a line with a FluidFM Micropipette. The cells stay fully viable through this procedure. Image courtesy of P. Dörig, ETH Zurich.

Use Cases

Learn how FluidFM is used, among others, to quantify cell - surface interactions or to pick up a bead for force mapping on living cells.

Selected FluidFM publications on force spectroscopy

How it works


Based on hollow force-controlled FluidFM probes

The core principle of FluidFM enabling single cell force spectroscopy are our patented, hollow force-controlled probes. The variety of available probe tips and aperture sizes enables distinct experimental designs as described above.
More on FluidFM probes & technology

FluidFM probes can be used with the FluidFM ADD-ON in combination with an existing AFM or with our standalone FluidFM OMNIUM system.
Learn more on the differences below

System comparison - FluidFM ADD-ON vs FluidFM OMNIUM

Find out which system fits your application and needs

Find out more about our systems

More on force spectroscopy

Physical studies of single cells allow insights into biophysical and mechanobiological phenomena in differentiation, growth, and proliferation. In cancer research, immunology and neuroscience, the mechanical properties of cells and their interactions with their environment such as with other cells (cell heterogeneity) or the properties of biological structures and surfaces are key parameters. Likewise, for implant materials there is a clinical need to understand and control how various cells adhere to it.

With FluidFM, biomechanical properties such as adhesion can be readily and efficiently measured, allowing to gain deeper understanding, to design novel experimental approaches, and to explore solutions to modify and optimize the desired properties.

Force spectroscopy promises critical insights in microbial biofilm formation, anti-microbial or non-fouling surfaces and more.

Microbes are fundamental to any ecosystem and the recent rise of the microbiome research field is just about to give us even more fascinating insights in their world and our co-existence. As pathogens, symbionts, or production organisms, they play an important role in clinical and pharmaceutical applications as well as for agricultural and industrial use.

As example, biofilm formation of microbes relies on adhesion to both the substrate and each other. By measuring these adhesion mechanisms, they can be understood and addressed in the further optimization of surface materials, like in the design of implants as well as anti-microbial or non-fouling surfaces.

Mechanical studies with FluidFM therefore give valuable insights for microbial research, extending the body of knowledge gained through classical biological research methods.

Colloids are ubiquitous in both industry and nature, being the key component in emulsions, foams, gels, and aerosols. Material and surface properties play an important role in their design. FluidFM enables analyzing mechanical properties like adhesion in a time- and cost- efficient manner, thereby accelerating research and new product development.